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We show that the growth of the cosmological scale factor R(2) can be conve- 
niently parametrized as a function of a space-time-dependent cosmological 
function 2(x). To show the parametrization, we introduce a simple heuristic 
model of the cosmological function 2(x) during the inflationary period by 
assuming that it is spatially uniform but time dependent with an exponential 
growth phase followed by a rapid decay. Based upon this relatively simple 
empirical model we are able to calculate directly all the required features of an 
inflationary period such as exponential growth of the scale factor plus a natural 
relaxation (graceful exit) of 2 to a positive present-day cosmological constant. 
The model also predicts the presence of a very large, negative Planckian 
cosmological constant at the Planck time. 

1. I N T R O D U C T I O N  

The unders tanding of  the present-day cosmological  constant  20 is at 
best experimentally incomplete. Observational  da ta  on remote quasistellar 

o b j e c t s  do no t  fit simple cosmological  models wi thout  a cosmological  
constant  (Zeldovitch,  1968, 1981). Also the introduct ion o f  2 4 :0  signifies 
that  the vacuum energy-momentum,  i.e., empty space, produces a gravita- 
t ional field just  as well as mat ter  energy-momentum.  That  the vacuum can 
contr ibute  to the energy density o f  spacetime is not  surprising in view of  
modern  field theories o f  elementary particles. Modern  field theories not  
only allow for a nonzero  vacuum energy density, but  they also strongly 
suggest it should have a large value (Georgi  and Glashow, 1974). For  
example, in mos t  inflationary models (Albrecht  et  aL, 1982; Suen and 
Clifford, 1988; Abbot t ,  1988); the vacuum energy density may  well reach 
1048 GeV 2. Thus  it is mos t  puzzling for cosmological  models that  the 

~P.O. Box 764, West Covina, California 91793. 
2Department of Physics, University of Alabama in Huntsville, Alabama 35899. 
3FFA, 1900 Alexander Dr, Huntsville, Alabama 35801. 

2099 
0020-7748/94/1000-2099507.00/0 �9 1994 Plenum Publishing Corporation 



2100 Wahba et al. 

cosmological constant now takes the extraordinary small value (Hawking, 
1984), 1201 < 10 -82 GeV 2. It is very difficult to explain in any inflationary 
model how a factor of 10 ~~176 could occur in any "natural" way. It is not just 
simply a case of repeating the oft-quoted statement, "All that is needed for 
inflation is for the cosmological constant to be sufficiently large for a 
sufficiently long period of time for the universe to expand by at least 30 
orders of magnitude." First of all the cosmological "constant" can not be 
constant, and second its change must be related to some physical process 
that feeds into the gravitational field equations which govern the time 
evolution of the universe. Since the time dependence of the cosmological 
function is relevant to its present-day value, it seems ironic that this relic of 
the inflationary period has not been treated more carefully in inflationary 
models. This problem is probably the most serious deficiency of all 
inflationary models. Thus the important question occurs within these 
models: Is it possible to model the inflationary period with a well-defined 
cosmological function that eventually decreases to the present-day value? 
This, of course, leaves open the fate of the cosmological function after the 
end of the inflationary period. The heuristic model used here will imply a 
very different possibility, which we touch on when appropriate and in our 
conclusions. 

In order to study some aspects of the above problems, we first model 
the inflationary period. We present an ansatz for the cosmological function 
which can be related to the time of inflation that depends on a period of 
exponential growth followed by exponential decay. Such a model shows 
that the cosmological function must start out at the Planck time with an 
extraordinarily large value in comparison with its present-day value in 
order to cancel what appears also to be a very large, negative Planckian 
cosmological constant. Physically, a Planckian cosmological constant sig- 
nifies that the vacuum must be extraordinarily stable so that the initial 
instability must have been very large to lead to an inflationary epoch. The 
time dependence of the cosmological function then provides a rate scale for 
events during the inflationary period. Thus at the beginning of inflation 
when the temperature T is of the order of the Planck mass ( --- 1019 GeV), 
the total energy density of the universe is dominated by the vacuum energy 
density. Due to an instability of the vacuum energy density, there will be a 
transition to an inflationary period. The cosmological function then acts as 
an effective energy-momentum tensor in the gravitational field equations 
from which we are able to predict the growth of the cosmological scale 

�9 factor. Our heuristic model does not strongly depend on the details of the 
inflationary period; however, the physics that manifests itself in the cosmo- 
logical function which in turn produces an effective energy-momentum 
tensor is as yet unknown or unproven. Thus referring to this process in 
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terms of the growth and decay of an "X particle" could be misleading and 
will be avoided for the most part. However, the details are not inconsistent 
with different theories such as the grand unified theory (GUT), quantum 
mechanical models, spacetime symmetry breaking, or chaotic models, since 
the overriding similarity among these models is the time scales. The major 
events are closely paralleled by the growth and decay of the cosmological 
function, which in turn shows the significance of the parametrization we 
discuss in the body of this work. In the next section, however, we discuss 
the motivations for a time-varying cosmological function, and in Section 3 
we present a heuristic model for 2(0. In this work the cosmological 
function is constrained to be spatially uniform for simplicity; such varia- 
tions in themselves could have significance, but will not be considered here. 

In Section 4 we represent the field equations and the energy-momen- 
tum tensor. In Section 5, we prov e that there exists a consistency among 
the field equations and the conservation of energy-momentum that depends 
on the cosmological function, the model of which we present in Section 6 
as well as how we set the parameters using boundary conditions. We then 
give our calculation of the scale factor in Section 7, and present our 
conclusions and recommendations in Section 8. 

2. MOTIVATION: EXISTENCE OF THE COSMOLOGICAL 
CONSTANT 

2.1. Future Observational Tests 

Up to the present, the most positive recent discussion of observational 
evidence for a nonzero cosmological term has involved distance/time-scale 
arguments by de Vaucouleurs (1982, 1983a,b) and space distributions of 
the quasars by Fliche and Souriax (1992). A significant negative discussion, 
based on the redshift-number test, was presented by Loh (1986). Loh's 
discussion was, however, critically reviewed by Weinberg (1982) and the 
issue of the cosmological constant remains very much open. Turner et al. 
(1984) have reached a similar conclusion based on a comprehensive survey 
of all the available observational evidence, all given equal weight. Klapdor 
and Grotz (1986) have found similar evidence in favor of a nonvanishing 
cosmological term from knowledge of better cross sections for heavy-ele- 
ments synthesis and further investigation of globular clusters, which gave 
revised estimates based on beta-delayed fission and neutron emission 
studies of the r-process by Thielemann et al. (1983). Similar conclusions 
were presented by Blome and Priester (1985) along with a subsequent 
analysis of the role of the vacuum energy in cosmology. 

In subsequent analyses of potential observations with better telescopes, 
such as the Hubble Space Telescope, Hoell Chu et al. (1988) have focused 
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on the apparent diameter vs. redshift test for galaxies to provide sufficient 
information for a reliable estimate of the cosmological term. Careful 
reading of a recent paper by Loh (1988) leads to similar conclusions 
concerning the desirability of a series of accurate measurements with an 
instrument of the capability of the Hubble Space Telescope. In anticipation 
of this, a complete set of astrophysical formulas for all the standard tests 
in cosmology has been made available in the work of Dabrowski and 
Stelmach (1982, 1986). The Hubble Space Telescope will therefore be of 
great value in providing observations which should provide better up- 
per and lower limits on the cosmological term and other cosmological 
parameters. 

2.2. Asymptotic and Qualitative Analyses of Cosmological Models with a 
Cosmological Term 

Qualitative and geometric analyses of cosmological models with a 
cosmological term have been limited in number. An early work by Niko- 
marov and Khalatnikov (1978) considered only Friedmann models and 
was related to prior work on dissipative processes and bulk viscosity in 
those models by Belinskii and Khalatnikov (1976, 1977). More extensive 
work by Weber (1984, 1985, 1987, 1988) has considered the role of a 
cosmological constant in the evolution of an anisotropic universe from 
early through late times. This work has still been somewhat limited in that 
inhomogeneous cosmologies have not been analyzed, nor have all the 
Bianchi types. Asymptotic analyses of the late-time effects of a cosmologi- 
cal constant have been given by Fabbri (1979) and Wald (1983). Those 
asymptotic analyses have been extended to further establish a correspon- 
dence between the late-time behaviors of inflationary cosmologies and 
those with cosmological constant by Jensen and Stein-Schabes (1986, 1987) 
and by Turner and Widrow (1986). 

None of these analyses have considered the entire range of Bianchi 
types, nor have they approached the question of the analysis of such 
models with a time-varying cosmological term. A direction for future work 
which would be most useful is the qualitative and asymptotic analyses of 
the general classes of spatially homogeneous cosmologies with various 
time-varying cosmological terms, to obtain limits and constraints of the 
functional forms of those terms (as functions of time). 

2.3. Analyses of Other Approaches to Time-Varying Cosmological Terms 
and Inflationary Cosmologies 

A large number of independent investigations of Various effects of 
time-varying cosmological terms on the evolution of cosmological models 
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have appeared. It would be useful if they were collected into groups or 
classes, and then compared and contrasted to establish relations between 
them. Observational limitations can then be used to test the validity of whole 
classes. 

A sample of groupings of cosmologies might include: 
(i) Time-varying vacuum energy density (e.g., Pollock, 1980; Fabbri, 

1980; Salucci and Fabbri, 1983; Freese et al., 1987). 
(ii) Background temperature determined by the cosmological constant 

or function [such as by Gasperini (1987a,b, 1988)]. 
(iii) Attempts at classical or semiclassical cancellations of the cosmo- 

logical constant (e.g., Hawking, 1984; Abbott, 1985; Ozer and Taha, 1986; 
Ford, 1982; Reuter and Wetterich, 1987; Barr, 1987; Suen and Will, 1988). 

(iv) Observational tests of the notion of a time-varying cosmological 
function (e.g., Peebles, 1984; Peebles and Ratra; 1988; Ratra and Peebles, 
1988; Olson and Jordan, 1987). 

(v) Gravitational and cosmological constant calculations from funda- 
mental fields which may be time-varying (e.g., Adler, 1982; Canuto and Lee, 
1977; Canuto et al., 1978). 

There are many more groupings that probably can be named, but the 
above gives some indication of the task. There is much to do in this area, 
but there is much to be gained from resolving these issues. 

Thus overall a model-independent investigation of the cosmological 
function during the inflationary period that consistently arises from the 
gravitational field equations to the present-day value will itself consistently 
support the existence of the cosmological "constant." 

3. C O S M O L O G I C A L  F U N C T I O N :  A HEURISTIC APPROACH 

Our ansatz for the cosmological function consists of the product of two 
functions. The first function F(~) depends on a period of exponential growth 
described by the production rate ~ of the X particle in the early universe 
during the first phase of inflation. (Note again that we describe our model 
in terms of a particle because of its simplicity of thought and because the 
concept of a "particle" is so complex.) The second function K(/~) depends 
directly on the rate of decay fl of X. During the first regime (production of 
X) F(e) dominates and eventually saturates at Tc when production and 
decay reach equilibrium. During the second regime, decay dominates. Thus 
we arrive at the following ansatz for the cosmological fimction 

2(0 oz F(~)K(~) (t)  

We will use the above ansatz for the cosmological function to study the 
behavior of the cosmological scale factor R(2) parametrized with respect to 
the cosmological function during the inflationary period. 
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4. EINSTEIN FIELD EQUATIONS 

We derive the field equations in the case where the scale factor R is 
given as a function of the cosmological function 2. Now, during inflation, 
the scale factor will be parametrized by a time-dependent cosmological 
function 2(x), where x represents a space-time coordinate. By this way, the 
Robertson-Walker metric (Misner et al., 1973) can be written in the form 

ds2= - d t 2  + R2(2)[dr2/(1 - k r  2) +r2 dOZ +rZsin20dq52] (2) 

where R(2) will then join smoothly to the usual scale factor R(t) at the end 
of the inflationary period. It is important to point out that in the Robert- 
son-Walker cosmological metric models, since the scale factor R is already 
a function of x, then assuming that both R and 2 are spatially homoge- 
neous does not destroy the general covariance of the theory (field equa- 
tions) and therefore does not introduce any preferred time upon the usual 
choice of comoving coordinates. In what develops, we show that the field 
equations are perfectly covariant. 

In this model, we use the energy-momentum tensor for a perfect fluid 

Tu~ = (p + p)u.u~ + Pguv (3) 

where 

Too = 

T,j =  g mO.) (4) 

We also find it convenient to parametrize both the pressure p and the 
density p as functions of 2. Here the four-velocity u" is given in terms of 
comoving coordinates, and uUu u = - 1 .  Using the Einstein field equation 

o.v  + = (5) 

we find the time-time component: 

J~2(R'/R) 2 - 2/3 = 8r~ap(2)/3 (6) 

and the space-space component: 

J'.(R'/R) + ~2(R"/R) + �89 2 - �89 = -4r~Gp(2) (7) 

where the prime indicates derivatives with respect to the parameter 2, and 
the overdot represents the directional derivative along fluid flow lines, 
,~ = u~0~2, which becomes an ordinary time derivative in the comoving 
frame. 

In the next section, we prove the consistency of the field equations 
when one has nonzero divergence of the energy-momentum 

T"v;. r 0 (8) 
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Such models are similar to Rastall's (1972) gravitational theory. It is 
interesting that a variational approach to such models is very difficult to 
find (Smalley, 1984). 

5. C O N S I S T E N C Y  OF FIELD E Q U A T I O N S  PLUS ENERGY 
C O N S E R V A T I O N  

The general consistency of the field equations and energy-conservation 
follows from the Bianchi identity, G"v;u = 0. Applying this to equation (5), 
we obtain 

TUv;, = 2v/(8~G) (9) 

Using equation (3) for the perfect fluid, we obtain 

2~/(8~G) = p,~ + ( - g ) -  l/2t3 u[( - g )  l/2(p + p)u"uv] - F~(p + p)uUu~ (10) 

Multiplying equation (10) by u ~, recalling that both p and p are 
parametrized functions of 2, and using equation (2), we get the final 
equation for the conservation of energy 

p' + 3(p + p ) R ' / R  + (8zra)- '  = 0 (11) 

which expresses the conservation of energy-momentum as a consequence of 
equation (8). 

Now if one begins with equation (6), takes the directional derivative 
along the fluid flow lines, and substitutes p' from equation (11), one 
obtains equation (7), which then proves the covariance of this model. 

In the next section, we show how to fix the parameters for the 
cosmological function in our model. 

6. C O S M O L O G I C A L  F U N C T I O N  

Based upon our ansatz (1), we write a spatially uniform cosmological 
function with time dependence as 

2(0 = A( 1 - e -~'t)e -t3t (12) 

where A is a constant of proportionality. The parameters A, e, and fl are 
determined from the boundary conditions imposed on 2(0. An alternate 
form for equation (12) can be given by 

2(0 = A(1 - e-~")e -~' + 2p (13) 

where 2p is the value of the cosmological function at the Planck time. We 
have used both models in our calculations, but both models give the same 
results. We choose, however, to work with equation (12) for reasons that 
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will become clear by the end of this section. There is, nevertheless, a 
superficial difference between them in the way one chooses the boundary 
conditions for 2(0 at the Planck time tp.  For example, in (12) 

2(tp) = const (14) 

In this case, we find that the initial value of 2 is a very large positive 
number; but in using (13) at t = tp, we set 

,~(tp) = 0  (15) 

In this case, 2p ~ 0 such that - 2p  is equal in magnitude to the constant 
determined in equation (14) for the first model. In using (13), we needed 
the a d d i t i o n a l  boundary condition, 2 = 0 at t = tp. This observation, how- 
ever, is enough to establish that there is a large, negative Planckian 
cosmological constant. Since both models seem to give the same results in 
our calculation, we use the first model for the sake of simplicity in our 
discussions. 

The boundary conditions that we use in our model, equation (12), are 
as follows: 2(0 takes the present-day value of the cosmological constant at 
the end of the inflationary period 

2(tl) = 20 (16) 

where tl = 4.8 x t0 -38 sec is the time at the end of the inflationary period 
and the beginning of the radiation era (Albrecht e t  a l . ,  1982; Branden- 
berger, 1985). The second condition requires that the inflation of the 
universe be sufficiently large to explain the horizon problem (Guth, 1981; 
Linde, 1983), so that the change in the scale factor is given by 

AR - exp(&) ~ exp(65) (17) 

where ~" is the average value of the cosmological function during the 
inflationary period z = tl  - tp. The third condition involves the temperature 
TRH at the beginning of the so-called reheat period discussed in some 
inflationary models. Using the upper and lower limits imposed on TRH by 
these models (Albrecht e t  a l . ,  1982; Abbott and Deser, 1982; Krauss, 1983; 
Linde, 1982; Turner, 1986; Mijie e t  a l . ,  1986), we have 

3 x 1016 GeV ~ TRH >-- 1014GeV (18) 

o r  

0 . 2 1 7  x 10 -40 s e c  --< t '  ---< 0 . 6 5 8  • 10 -38 s e c  (19) 

where t' corresponds to the beginning of the reheat period. Thus the reheat 
period is 

At' = a -  1 = tl - t ' (20) 
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where a is the unification scale, which is defined in these models (Albrecht 
et  al. ,  1982) 4 to be in the range 1014-10 ~5 GeV. We then apply these 
boundary conditions to set the parameters  in our empirical model. 

The first condition, 20, is calculated directly f rom the field equation (5) 
using the present-day value of  the Hubble constant (Kolb  and Turner, 
1988), 

H o = R ( t ) / R ( t )  = f ~ R ' / R  = 50 • 7 km sec -1 M p c - t  (21) 

and energy-density, Po = 2 x 10 -31 g/cm2; then 

20 = 1.04 x 10 -35 sec -2 = 1.155 x 10  - 5 6  c m  - 2  (22) 

By comparison,  in inflationary models (Albrecht et  al. ,  1982; Branden- 
berger, 1985; Hawking, 1984), 5 20 ~- 10 -82 GeV 2 = 2.25 x 10  - 3 4  s e c  - 2  = 

2.68 x 10-SScm -2, and in the Lema'{tre (1931, 1933) model 20= 1.4 x 
10 -35 sec -2 ----" 1.5 • 10 .56 cm -2, 

From the second condition given by (17), we find that in order to have 
sufficient inflation, then 

/~ = 65 (23) 

This means that 

fe t = '~ A (  1 - -~ ' ) e  - p '  d t  = ~z = 65 (24) e 
=tp 

The third condition is imposed by noting that the break between 
exponential growth and decay occurs at the time when ,~ = 0. Thus we set 
this condition so that at t = t '  

,~(t') = 0 (25) 

Using the above boundary conditions, we use the N e w t o n - R a p h s o n  
method (Press e t  at . ,  1986) to compute A, a, and /L  We find the consistent 
set of  values 

t" = 0.264 x 10 -39 s e c  ( ~ TRn = 2.49 X 10 Is GeV) 

A = 5.227 x 1044 sec -2 
(26) 

= 1.78 x 1036 sec -1 

/ / =  3.78 x 1039 sec -1 

Although we used double-precision arithmetic, we find that  the value of t '  

4See Brandenberger (1985) for a summary of all inflationary models through 1985. 
sUnit conversions in this paper follow the Appendix of Fliche and Souriau (1992). 
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given above is not accurate enough to describe the details of inflation near 
t = t', where ,~(t') = 0. This problem also occurs when we use the alterna- 
tive model given by equation (13). Figure 1, which gives a log-log plot of 
2 versus t, immediately shows the calculational difficulties due to the large 
dynamic range of 2, which varies over 75 orders of magnitude from 
10 40 s e c  - 2  at t' to 2o = 1.04 x 10 -35 s e c  - 2  at the beginning of the radiation 
era at q. The value t' = 0.264 x 10 - 3 9  sec, which would correspond in this 
model to TRH = 2.49 X I0 ~5 GeV, lies within the extreme range given by 
equations (18)-(19); however, it corresponds to a unification scale that is 
about one order of magnitude larger than the scale (somewhat) imposed by 
the standard inflationary models with TRn--~ 1014 GeV (de Vaucouleurs, 
1983b). Consequently the reheat period, A t ' =  4.77 x 10 -38 sec (20.137 x 
l014 Gev) in this model is very fast. 

Now we return to the alternative model given by equation (13). We 
have in this case the same parameters A, ~, and fl plus the additional 
parameter 2p. We use the same boundary conditions, (16)-(17), and (25), 
with the additional condition given by equation (15). Because of the 
calculational difficulties near t = t '  (due to the discontinuity around that 
point), we develop a technique which greatly suppresses the magnitude of 
the discontinuity around that point. Any number can be written as a sum 
of a series of numbers such that for any product 

ctt '= ~ ~tj ~ t~ (27) 
j = l  i = 1  

,5; 
3 5  

25 

_o 5 

o 
J - 5  

- 1 5  

- 2 5  

- 35 
- 4 3  

I ....... I I I I 

- 4 z  -4~ - 4 0  - 3 9  - 3 8  -3"r 

LoCJlo(t ) 
The cosmological function 2 as a function o f  time from tp to q .  Fig. I. 
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In the calculation we are able to keep terms down to the order of 10 .73 and 
use the bisection method (Press et al., 1986) with a tolerance of 10 -6s. The 
result gives the consistent set of values 

= 6.50 • 108 (given) 

A = 6.99 �9 �9 - x 1069 

/~ = 2.643321 " "  • 1038 

2p= - 6 . 7 3 2 0 0 " "  • 1035 

t ' =  3 . 7 8 " "  • 10 -39 

(28) 

where ~ is set at the value given and the calculation is continued until we 
reach a numerical accuracy to the order of 10 -73. The dots refer to 
numbers carried out to nearly 70 decimal places. It is clear from the value 
of 2p that in order to eventually connect up with the exact value of 
'~0 "~ 10--35 see-Z, we need to carry out the calculation to at least 70 decimal 
places, which seems to be beyond the floating-point capability of the 
CRAY used in this work. As a side result, the value of t '  = 1.76 • 10 ~4 GeV 
corresponds to a reheat period a -1  = 4.42 • 10 -38 sec ( = 1.49 • 10 t3 GeV), 
which is very close to the inflationary models discussed above. 

For convenience, in the next section, we apply the model given by 
equation (12) to the field equations (6)-(7) in order to find the scale factor 
R(2). However, in this model, 2(tp) is very large [see Figure 1 which is 
obtained from equation (26)] in order to compensate for the appearance of  
a universe at the beginning of the Big Bang with a very large, negative 
cosmological constant )~p. 

7. THE COSMIC SCALE FACTOR 

In order to determine the cosmic scale factor R(2), we combine the 
field equation (6) with the hypothesis of the equation of state for stiff 
matter (Wainwright et al., 1979) 

p(2) = p(2) (29) 

since in the early universe, the speed of sound in the ultrarelativistic fluid 
will be comparable with the speed of light. This gives 

J.'(R'/R) + ~2(R"/R) + 2,~2(R'/R) z - 2 = 0 (30) 

which is a second-order, nonlinear differential equation for R(2) in terms of 
the functions 2, ~, and )~; which are known. The function 2 is shown in 
Figure 1, and both functions ~ and )(can be obtained by direct differentia- 
tion of equation (12) with respect to time; thus 

)~(t) = A e - ~ t [ ~ e - ~ t _  fl(l -- e-:")] (31) 
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From the numerical calculation, we notice that )~(t) is a smoothly decreas- 
ing function, decreasing from ,((tp)=9.2 • 1080 to ,~(t ' )=0,  and then 
decreasing further to - 1 0  79 shortly after t'. Thereafter ,~ begins to slowly 
increase until the end of the reheat period to ,~(q)= -4 .47  • 10 4. Simi- 
larly, ,~(t) is given by 

2"( t) = Ae -at[fl2( 1 - e -~t) _ 2~fle - "  - ~2e -at] (32) 

The function 2" is an increasing function just until shortly past the inflection 
point at t ' , where there is an abrupt change from -3 .76  x 101~7 to 
6.94 x 101~8 in a very short time; it then starts to decrease thereafter to the 
value J'(t0 = 1.68 x 1044 at the end of  inflation. 

In order to solve equation (30) for the scale factor, we use a backward 
finite difference method (von Rosenberg, 1969) and find it convenient to 
define the quantity f(2) such that 

f(2) = R ' / R  = 0(ln R)/O2 (33) 

which reduces equation (30) to the following simplified equation: 

,(~c, + 3~f2 + ,~)r_ 2 = 0 (34) 

Note that due to the relative simplicity of  equation (34) compared with 
equation (30), the parametrization of  the inflationary period in terms of  2 
is not only interesting, but useful. I n  addition, the function f(2) has 
welt-defined boundary conditions at the times t" ( -~ TRH) and t = tl at the 
beginning of  the radiation era. Now during the radiation era, we have 

R(t) = Rot  ~/2 (35) 

so that 

f ( q )  = R ' / R  = [~/(R~) = (2fi ~) -~ = - 2.34 x 103z see 2 (36) 

At t = t', )~ = 0, and then equation (34) gives 

f ( t ' )  = 2/X = -8 .32  x 10 -80 see 2 (37) 

We depict the variation of f (2)  with respect to 2 in Figure 2, which is not 
to scale. However, from this pictorial representation, we can see that f(2) 
is a decreasing function from t = tp to t = t ', and antisymmetric function 
about t = t ', and continues to decrease until t = ft. The bump near t = tl 
comes from trying to match the boundary conditions for the exponential 
function 2(0 to a constant 20 at the end of the so-called reheat period at the 
beginning of the radiation era. We believe that the bump would disappear 
if we could extend our model calculation to the present epoch instead of 
matching 2(0 at the beginning of the radiation era, i.e., treating even the 
present-day 20 as the long-tail value o f  the exponential function. This is an 
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Fig. 2. The function f as a function of  2. Note the broken scales for f and 2. 

interesting supposition, but it would complicate our simple treatment of the 
boundary conditions at t = q. We will, however, discuss this prospect in 
our conclusion. 

The cosmic scale factor R(2) is obtained by direct integration off()~ 
We note that R(2) is a multivalued function of 2. However, this representa- 
tion has a rather interesting form, as is seen in Figure 3, where we show 
R/Ro versus the cosmological function 4. Phase I represents a regime of 
exponential growth for the cosmological function. During this period, the 
function R/Ro increases rapidly (exponentially) until it reaches a steady 
state where the rate of growth is equal to the rate of decay at the critical 
temperature To. This is followed by a second phase of exponential decay 
when the effective temperature of the vacuum energy density falls below 
the threshold energy for growth of ).(x). This rapid decrease of ~. then 
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Fig. 3. 
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represents the end of inflation, i.e., the relaxation of the spacetime curva- 
ture so t ha t  the scale factor is described by the ordinary Fr iedmann-  
Robertson-Walker model (Weinberg, 1972). In Figure 4 we pictorially 
represent R(t)/Ro itself by breaking the axes in several places. In phase I, 
from t = tp to t = t', the exponential growth phase of  R/Ro is very clear. In 
phase II, it is easy to see the so-called "rollover" of R/Ro so that it joins 
the beginning of the radiation era at t = ft. Around t = t', the rapid change 
from exponential growth to exponential decay in 2(0 is very evident at the 
top of the graph. In the next section, we summarize our results. 
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Fig. 4. The cosmological scale factor R as a function of t. Note the broken scale for R. 

8. CONCLUSIONS 

We have shown how one can model the cosmological function during 
the inflationary period in order to follow the relatively long period of 
exponential expansion of the early universe. Such a model is consistently 
constrained to overcome the problems in the standard Friedmann cosmol- 
ogy (Guth, 1981), for example, horizon and flatness. In the GUT picture of 
inflation, this exponential expansion of the universe is driven by the false 
vacuum energy density of the Higgs field which acts like an effective 
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cosmological constant in the Einstein equations. Alternatively, many differ- 
ent underlying particle theories have been proposed. The most popular of 
these is the Coleman and Weinberg (1973) model. However, none of these 
theories is without problems, such as very fine-tuning of initial conditions 
(i.e., fields), or violently fluctuating fields at high temperatures (Mazenko 
et al., 1985). What we have assumed is that the idea of inflation is an 
attractive solution to the problems of the standard Big Bang cosmology. 
However, for all inflationary models, we know that there will be a growth 
phase which we associate with the cosmological function of the underlying 
gravitational theory (whether it is due to GUT or to some other quantum 
or classical theory) and a rapid decay period (whether it is due to super 
symmetry breaking in GUT or to the fast decay of unstable particles) down 
to the infinitesimally small cosmological constant ([2ol < 10-82 GeV 2) at the 
present epoch. There are many dynamical processes (Abbott and Deser, 
1982; Starobinsky, 1980; Myhrvold, 1983; Ford, 1985, 1987; Abbott, 1985; 
Barr, 1987; Reuter and Wetterich, 1987; Peebles and Ratra, 1988) which 
could dampen a cosmological constant, but our empirical model represents 
a minimal attempt to address these problems yet provide an overall 
explanation of what happens: there is an exponential growth regime, 
followed by a very short, exponential decay period. The exponential growth 
phase leads in a natural way to the expansion of the universe (inflation), 
and the second regime leads naturally to the decrease in 2 to its present-day 
value. The change between these two regimes is not overly abrupt as in the 
GUT model or the standard inflationary models. But on the other hand, 
the decay period is rather fast (Albrecht et aL, 1982; Brandenberger, 1985) 
compared with the long exponential expansion era, which can be seen from 
the flat part in Figure 1 for logl0(2) versus logl0(t). 

In satisfying the boundary conditions for our ansatz of the cosmolog- 
ical function during the inflationary period, we have discovered what 
appears to be a very large, negative Planckian cosmological constant ).p 
which also must be overcome by any inflationary model. This intrinsic 2p in 
effect says that the vacuum is extraordinarily stable, and that in order to 
have inflation, there must have been an enormous instability/fluctuation in 
the vacuum itself. However, with our ansatz for 2(0, we were able to study 
the growth of the cosmological scale factor R()~) and eventually R(t) during 
the inflationary period, This  was done by the introduction of the well- 
defined function f (2)  = R' /R,  which not only simplifies our calculation, but 
shows that the parametrization of the scale factor with respect to 2 is both 
interesting and useful. 

Although the model presented is equivalent to a single, thermody- 
namic, phase change, it exhibits all the required features of an inflationary 
period, such as exponential growth of the scale factor plus a natural 
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relaxation of 2(t) to the present-day cosmological constant. Since experi- 
mentally this constant is known today at best as an upper limit, we 
speculate that a definitive measurement of the contemporary cosmological 
constant would provide direct information of the "decay" rate (and there- 
fore a window into the physical process occurring during the inflationary 
epoch). 

We mention an alternative approach to the empirical inflationary 
model for ). used in this work. If one could find the field equations directly 
from a Lagrangian density for the vacuum gravitational field, a perfect 
fluid density, but now containing an additional term which yields a 
time-dependent cosmological term, the Lagrangian base of such a model 
would provide an inherent self-consistency of the field equations and the 
conservation laws. Along this line, recent work of SmalIey (1993) extends 
the variational principl e for general relativity by extending Riemannian 
spacetime to Weyl spacetime plus the addition of a surface term in the 
thermodynamics for the internal energy function in an extended Ray-  
Einstein-Hilbert variational principle (Ray, 1972) and obtains a time-de- 
pendent cosmological function. We are presently looking for solutions for 
such a spacetime for comparison with this work. 
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